Л. Э. Генденштейн, Л. А. Кирик

УЧИМСЯ РЕШАТЬ ЗАДАЧИ ПО ФИЗИКЕ

7 класс

Подробные решения. Подсказки. Ответы

Москва ИЛЕКСА 2025 УДК 372.853:531+536 ББК 22.3:74.202я721 ГЗ4

ГЗ4 Генденштейн Л. Э., Кирик Л. А.

Учимся решать задачи по физике. 7 класс. Подробные решения. Подсказки. Ответы / Л. Э. Генденштейн, Л. А. Кирик. — М.: Илекса, 2025. — $136\,\mathrm{c.:}$ ил.

ISBN 978-5-89237-750-8

Настоящее пособие поможет школьнику научиться решать задачи и предоставит учителю обширный материал для обучения решению задач в классе, для самостоятельных и домашних работ, а также для подготовки учеников к олимпиадам по физике (школьным и районным).

Пособие будет полезно также репетиторам и их ученикам.

Пособие содержит более 400 задач по всем разделам курса физики 7-го класса. Задачи дифференцированы на три уровня сложности. К ключевым задачам даны подробные решения, многие задачи сопровождаются «подсказками», удобно размещёнными внизу страницы.

УДК 372.853:531+536 ББК 22.3:74.202я721

Л. Э. Генденштейн, Л. А. Кирик

Учимся решать задачи по физике

7 класс Подробные решения. Подсказки. Ответы

Подписано в печать 12.08.2024 Формат 60×88/16. Усл. печ. л. 8,31 Тираж 2000 экз. Заказ

> OOO «Илекса» +7(964) 534-80-01 real-ilexa@yandex.ru www.ilexa.ru

[©] Генденштейн Л. Э., Кирик Л. А., 2025

[©] ИЛЕКСА, 2025

[©] Художественное оформление ИЛЕКСА, 2025 Все права защищены

ОБ ЭТОМ УЧЕБНОМ ПОСОБИИ

НАЗНАЧЕНИЕ

Настоящее пособие:

- поможет школьнику научиться решать задачи,
- предоставит учителю обширный материал для обучения решению задач в классе, для самостоятельных и домашних работ, а также для подготовки учеников к олимпиадам по физике (школьным и районным).

CTPVKTVPA

- В каждом разделе физики курса 7-го класса отобраны ключевые задачи, к которым обычно приведены подробные решения.
- К каждой ключевой задаче подобраны или составлены «похожие» задачи, к которым даны советы, а также задачи только с ответами.

COCTAB

Пособие содержит более 400 задач, дифференцированных на три уровня сложности.

Примерно к 100 задачам приведены подробные решения, около 140 задач сопровождаются советами.

ОБОЗНАЧЕНИЯ

Слева от номера задачи:

- ключиком обозначены ключевые задачи, к которым приведены подробные решения,
- пальцем, показывающим вниз, обозначены задачи, к которым приведены советы внизу страницы.

Желаем младшим читателям научиться, а старшим — научить решать задачи по физике!

1. МЕХАНИЧЕСКОЕ ДВИЖЕНИЕ

ПОЛЕЗНЫЕ СВЕДЕНИЯ

- При прямолинейном равномерном движении скорость $v=rac{l}{t},$ где l пройденный путь, t промежуток времени, в течение которого пройден этот путь.
- Единица скорости в СИ 1 м/с. Часто используют единицу скорости 1 км/ч. Для расчётов удобно использовать соотношение 1 м/с = 3.6 км/ч.
- При прямолинейном равномерном движении график зависимости пути от времени отрезок прямой, один из концов которого совпадает с началом координат.
- Чем больше скорость тела, тем больше угол между графиком зависимости пути от времени и осью времени.
- Средняя скорость $v_c = \frac{l}{t}$, где l весь пройденный телом путь, а t всё время, в течение которого тело находилось в пути (включая время остановок в пути).

ПРЯМОЛИНЕЙНОЕ РАВНОМЕРНОЕ ДВИЖЕНИЕ

ПЕРВЫЙ УРОВЕНЬ

1.1. Человек идёт со скоростью 1 м/с. Чему равна его скорость в километрах в час?

Решение. Чтобы найти скорость человека в километрах в час, надо выразить в километрах расстояние, которое пройдёт человек за 1 ч. Когда человек идёт со скоростью 1 м/с, он за 1 ч проходит 3600 м, потому что 1 ч = 3600 с (60 минут по 60 секунд в каждой). Поскольку 3600 м = 3,6 км, находим, что скорость человека равна 3,6 км/ч. Заметим, что решение этой задачи даёт простой способ «пересчёта» значения скорости из м/с в км/ч и обратно: численное значение скорости в км/ч в 3,6 раза больше численного значения скорости в м/с. Примеры: 10 м/с = 36 км/ч, а 72 км/ч = 20 м/с.

- **1.2.** Собака за 1 мин пробегает 180 м. Чему равна её скорость в СИ?
 - **1.3.** Самолёт пролетел 700 км за 1 ч, а на обратном пути его скорость была равна 200 м/с. Когда скорость самолёта была больше и на сколько (в км/ч)?
 - **1.4.** Такси едет со скоростью 90 км/ч. Чему равна его скорость в СИ?
 - **1.5.** Какова скорость поезда в километрах в час, если каждую минуту мимо окна вагона «пробегает» очередной километровый столб?
- **1.6.** Велосипедист проехал 99 км за 5 ч 30 мин. Чему была равна его скорость в км/ч и в м/с?

Решение. Скорость v, пройденный путь l и время движения t связаны соотношением $v = \frac{l}{t}$. Чтобы найти значение скорости в км/ч, надо выразить путь l в

^{1.2.} Единица скорости в СИ — 1 м/c. Найдите, сколько метров в секунду пробегает собака.

^{1.3.} Выразите значение скорости 200 м/c в км/ч.

километрах, а время движения — в часах. Находим $v=rac{99\,\mathrm{km}}{5,5\,\mathrm{u}}=18\,\mathrm{km/u}.$ Чтобы найти скорость в м/с, надо разделить найденное значение на 3,6 (см. задачу 1.1). Получим $v=5\,\mathrm{m/c}.$

- **1.7.** Спортсмен шёл 2 ч 20 мин со скоростью 6 км/ч. Чему равен пройденный им путь?
 - **1.8.** Автомобиль проехал расстояние 120 км со скоростью 25 м/с. Сколько времени от ехал?
 - **1.9.** Теплоход плыл от одной пристани до другой сутки со скоростью 20 км/ч. Чему равно расстояние между пристанями?
 - **1.10**. Собака пробежала 3 км за 20 мин. Чему была равна её скорость в км/ч и в м/с?
 - **1.11**. Улитка ползёт вверх по стволу дерева со скоростью 1,5 см/мин. За какое время она поднимется на 3 м?
- 1.12. Велосипедист проехал два участка пути: первый длиной 5 км и второй длиной 4 км. На каком участке скорость велосипедиста была больше, если движение на каждом участке заняло одинаковое время? Во сколько раз больше?

Решение. Обозначим длины участков пути l_1 и l_2 , а скорости велосипедиста на этих участках v_1 и v_2 . По условию движение на каждом участке заняло одинаковое время, поэтому $v_1 = \frac{l_1}{t}$, $v_2 = \frac{l_2}{t}$. Чтобы сравнить скорости на разных участках, разделим первое равенство на

- **1.7.** Воспользуйтесь соотношением $v = \frac{l}{t}$ и выразите заданное в условии время в часах.
- **1.8.** Воспользуйтесь соотношением $v = \frac{l}{t}$ и выразите заданную в условии скорость в км/ч. Для записи ответа переведите найденное в часах время в часы и минуты.

второе. Получим после сокращения на t: $\frac{v_1}{v_2} = \frac{l_1}{l_2}$. Используя данные из условия, находим $\frac{v_1}{v_2} = \frac{5}{4} = 1,25$.

- 1.13. Вася проехал из своего посёлка в соседний за 1 ч на велосипеде, а возвращался пешком 2 ч 15 мин. Во сколько раз скорость езды Васи больше скорости его ходьбы?
- 1.14. Автомобиль проехал от пункта А до пункта Б, а затем до пункта В. Во сколько раз больше времени понадобилось на второй переезд, если расстояние от А до Б равно 120 км, а от Б до В 180 км, причём скорость автомобиля не изменялась?
 - 1.15. Велосипедист спускался по склону со скоростью 18 км/ч, а поднимался по тому же склону со скоростью 10 км/ч. Во сколько раз время подъёма больше времени спуска?
 - **1.16.** Автомобиль проехал с одной и той же скоростью два участка пути: первый за 1 ч 20 мин, а второй за 2 ч. Во сколько раз длина второго участка больше?
 - **1.17.** Мотоциклист на первом участке пути ехал со скоростью 50 км/ч, а на втором со скоростью 70 км/ч. Во сколько раз длина второго участка больше, если время движения на участках было одинаковым?
 - 1.13. Обозначьте времена движения на велосипеде и пешком t_1 и t_2 . Используя то, что по условию Вася проехал и прошёл равные пути, докажите, что $\dfrac{v_1}{v_2}=\dfrac{t_2}{t_1}.$
 - **1.14.** Обозначьте времена движения на участках t_1 и t_2 , а длины участков l_1 и l_2 . Используя то, что по условию скорость автомобиля не изменялась, докажите, что $\dfrac{t_2}{t_1}=\dfrac{l_2}{l_1}.$

1.18. На рис. 1.1 изображены в одинаковом масштабе графики зависимости пути от времени для тел 1 и 2. Скорость какого тела больше? Во сколько раз больше?

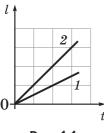
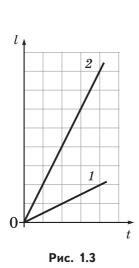
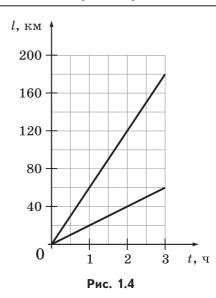


Рис. 1.1


Рис. 1.2


Решение. Из формулы $v=\frac{l}{t}$ следует, что отношение скоростей двух тел равно отношению путей, пройденных этими телами за $o\partial ho$ и то же время: при равных t получаем $\frac{v_1}{v_2}=\frac{l_1}{l_2}$. Сравнить пути, пройденные телами 1 и 2 за одно и то же время, можно с помощью приведённого графика: удобно, например, выбрать промежуток времени между начальным моментом и моментом,

дённого графика: удобно, например, выбрать промежуток времени между начальным моментом и моментом, отмеченным пунктиром на рис. 1.2. Мы видим, что за один и тот же промежуток времени тело 2 прошло в 2 раза больший путь, чем тело 1. Следовательно, v_2 в 2 раза больше, чем v_1 . Обратите внимание: скорость больше у того тела, график зависимости пути от времени для которого составляет *больший угол* с осью времени.

- **1.19.** На рис. 1.3 изображены в одинаковом масштабе графики зависимости пути от времени для пешехода и велосипедиста. Известно, что скорость пешехода 5 км/ч. Чему равна скорость велосипедиста?
 - **1.20.** На рис. 1.4 изображены графики зависимости пути от времени для автомобиля и велосипедиста. Автомобиль едет быстрее. Чему равна скорость каждого из них?

^{1.19.} Сравните с помощью графика пути, проходимые пешеходом и велосипедистом за одно и то же время.

второй уровень

1.21. На рис. 1.5 изображены графики зависимости пути от времени для мотоциклиста и автомобиля, выехавших из одного города в одном направлении по прямой дороге. Автомобиль едет быстрее. Чему равна скорость каждого из них? Чему соответствует точка пересечения графиков? Что означают её координаты?

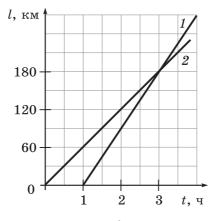


Рис. 1.5

Решение. Больший угол с осью времени у графика 1, следовательно, он соответствует автомобилю, а график 2 соответствует мотоциклисту. Согласно графику за 3 ч мотоциклист проехал 180 км, следовательно, его

скорость
$$v_{_{\rm M}} = \frac{180\,{\rm km}}{3\,{\rm y}} = 60\,{\rm km/y}$$
. Автомобиль выехал

на 1 ч позже и за 2 ч проехал тоже 180 км. Следовательно, его скорость $v_{\rm a}=\frac{180\,{\rm km}}{2\,{\rm y}}=90\,{\rm km/y}$. Точке пере-

сечения графиков соответствует момент времени, когда пути, пройденные автомобилем и мотоциклистом, равны. Значит, координаты этой точки означают место и время их встречи: автомобиль догнал мотоциклиста через 2 ч после своего выезда на расстоянии 180 км от города.

1.22. На рис. 1.6 изображены графики зависимости пути от времени для мотоциклиста и велосипедиста, выехавших из одного города в одном направлении по прямой дороге. Мотоциклист едет быстрее. Чему равна его скорость, если скорость велосипедиста равна 30 км/ч? Какое расстояние проехал каждый из них до момента, когда мотоциклист догнал велосипедиста, если это произошло через 3 ч после выезда велосипедиста?

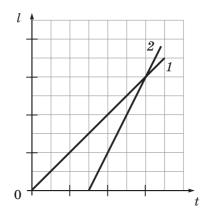


Рис. 1.6

1.23. Поезд проезжает по мосту. От въезда локомотива на мост до съезда с моста последнего вагона прошла 1 мин. Чему равна скорость поезда, если длина моста 700 м, а длина поезда 300 м?

Решение. За указанное в условии время поезд проезжает расстояние, равное сумме длин поезда и моста. Сле-

довательно, скорость поезда
$$v=\frac{300\,\mathrm{m}+700\,\mathrm{m}}{1\,\mathrm{muh}}=1\,\frac{\mathrm{кm}}{\mathrm{muh}}.$$
 Это соответствует скорости $60\,\mathrm{km/y}$.

- **1.24.** Сколько времени поезд длиной 400 м едет по мосту длиной 300 м, если скорость поезда 36 км/ч?
 - **1.25**. Поезд длиной 240 м проехал по мосту за 40 с. Чему равна длина моста, если скорость поезда 54 км/ч?

ТРЕТИЙ УРОВЕНЬ

- 1.26. Электричка проезжает небольшую станцию без остановки. Мимо стоящего на перроне человека вся электричка проезжала 10 с, а вдоль всего перрона длиной 400 м 30 с.
 - а) Чему равна длина электрички?
 - б) Чему равна скорость электрички (в км/ч)?

Решение. Обозначим t_1 время, в течение которого электричка двигалась мимо стоящего на перроне человека, а длину электрички обозначим l_3 . За время t_1 электричка проехала расстояние, равное длине электрички, поэтому $l_3 = vt_1$.

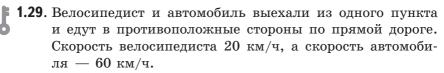
Обозначим t_2 время, в течение которого электричка двигалась вдоль всего перрона, а длину перрона обозначим $l_{\rm n}$. За время t_2 электричка проехала расстояние, равное $\mathit{суммe}$ длин электрички и перрона, поэтому $l_{\rm s}+l_{\rm n}=\mathit{vt}_2$. Из написанных двух уравнений можно получить одно уравнение для нахождения длины электрички, если разделить второе урав-

^{1.24.} За искомое время поезд проезжает расстояние, равное сумме длин поезда и моста.

нение на первое. Мы получим $\frac{l_{_{9}}+l_{_{\Pi}}}{l_{_{9}}}=\frac{t_{2}}{t_{1}}.$ Отсюда

$$l_{_{9}}=l_{_{\mathrm{II}}}rac{t_{_{1}}}{t_{_{2}}-t_{_{1}}}.$$
 Подставляя данные из условия, получаем:

$$l_{_{9}}=400\ \mathrm{m}\cdot \frac{10\ \mathrm{c}}{30\ \mathrm{c}-10\ \mathrm{c}}=200\ \mathrm{m}.$$
 Зная длину электрички,


можно найти её скорость, используя уравнение $v=rac{l_{_{9}}}{t_{_{1}}}.$

Находим: $v=\frac{200\,\mathrm{m}}{10\,\mathrm{c}}=20\,\frac{\mathrm{m}}{\mathrm{c}}$. Это соответствует скорости 72 км/ч.

- 1.27. Сколько времени будут двигаться друг мимо друга пассажирский поезд и товарный состав, едущие по параллельным путям в противоположных направлениях, если скорость пассажирского поезда 100 км/ч, его длина 300 м, скорость товарного состава 80 км/ч, его длина 800 м?
 - 1.28. Два поезда одинаковой длины едут по параллельным путям в одном направлении. Скорость первого поезда 120 км/ч, а скорость второго 66 км/ч. Первый поезд обгоняет второй в течение 1 мин. Чему равна длина каждого поезда?

СЛОЖЕНИЕ СКОРОСТЕЙ. ПЕРЕХОД В ДРУГУЮ СИСТЕМУ ОТСЧЁТА

ПЕРВЫЙ УРОВЕНЬ

^{1.27.} Найдите скорость товарного состава относительно пассажирского поезда. За искомое время состав с этой скоростью проезжает расстояние, равное сумме длин поездов.

СОДЕРЖАНИЕ

Об этом учебном пособии	3
1. Механическое движение	4
Прямолинейное равномерное движение	5
Сложение скоростей. Переход в другую систему отсчёта	12
Средняя скорость	24
2. Силы	29
Macca	30
Плотность	32
Сложение сил	37
Сила упругости	39
Сила тяжести. Вес	43
Силы трения	47
3. Давление. Плавание тел	58
Давление твёрдых тел	60
Давление жидкости	63
Атмосферное давление	75
Закон Архимеда. Плавание тел в жидкости	80
Воздухоплавание	91
4. Механическая работа и мощность. Энергия	96
Механическая работа	99
Мощность	104
Механическая энергия. Закон сохранения энергии	106
Простые механизмы	111
Ответы	127
Справочные данные	134